Supplementary Information

In-Depth Determination and Analysis of the Human Paired Heavy and Light Chain Antibody Repertoire

Brandon J. DeKosky ${ }^{1}$, Takaaki Kojima ${ }^{1,2}$, Alexa Rodin ${ }^{1}$, Wissam Charab ${ }^{1}$, Gregory C. Ippolito ${ }^{3}$, Andrew D. Ellington ${ }^{4}$, George Georgiou ${ }^{1,3,5,6,,^{*}}$

1. Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, United States of America
2. Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
3. Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
4. Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
5. Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA.
6. Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
*Correspondence should be addressed to G.G. (gg@che.utexas.edu)

Supplementary Figure 1 A micrograph of the axisymmetric flow-focusing nozzle during emulsion generation (left), placed in context of the diagram from Figure 1a (right), where PBS/0.4\% Trypan blue exits the inner needle and cell lysis buffer exits the outer needle.

Supplementary Figure 2 MOPC-21 immortalized B cells encapsulated in emulsion droplets. The outer aqueous stream that normally contains cell lysis buffer (Fig. 1a, gray solution) was replaced with 0.4% Trypan blue in PBS to examine cell viability throughout the flow focusing and emulsification process. Emulsified cell viability was approximately 90% and cell viability did not differ substantially from non-emulsified controls.

Supplementary Figure 3 Heat map of V-gene usage for 129,097 VH:VL clusters recovered from Donor 1. Sequences were collected using primers targeting the framework 1 region; raw data is available in the online supplement.

Supplementary Figure 4 Heat map of V-gene usage for $53,679 \mathrm{VH}$:VL clusters recovered from Donor 2. Sequences were collected using primers targeting the framework 1 region; raw data is available in the online supplement.

Supplementary Figure 5 Heat map of V-gene usage for $15,372 \mathrm{VH}$:VL clusters recovered from Donor 3. Sequences were collected using primers targeting the leader peptide region; raw data is available in the online supplement.

Supplementary Figure 6 VH alignment of the six VRC26 HIV broadly neutralizing antibody variants recovered by PacBio sequencing of complete $\sim 850 \mathrm{bp} \mathrm{VH}: V L$ amplicons. Sequences were recovered from CD27 ${ }^{+}$ peripheral B cells of the CAP256 donor and aligned to the VRC26 VH unmutated common ancestor (UCA, Doria-Rose et al., Nature 2014). Corresponding light chain variants are shown in Supplementary Figure 7.

Supplementary Figure 7 VL alignment of the six VRC26 HIV broadly neutralizing antibody variants recovered by PacBio sequencing of complete $\sim 850 \mathrm{bp}$ VH:VL amplicons. Sequences were recovered from CD27 ${ }^{+}$ peripheral B cells of the CAP256 donor and aligned to the VRC26 VL unmutated common ancestor (UCA, Doria-Rose et al., Nature 2014). Corresponding heavy chain variants are shown in Supplementary Figure 6.

Supplementary Figure 8 Comparison of the number of non-templated bases (sum of somatic mutations and non-templated insertions) in the top 50 public, promiscuous VL nucleotide junctions shared by Donors 1, 2, and 3 to 50 randomly selected VL junctions paired with only a single heavy chain in the Donor 1, Donor 2, or Donor 3 repertoires (mean \pm s.d.). Statistical significance noted where $p<0.05\left(^{*} p<10^{-10}\right.$ compared to all other groups, ${ }^{* *} p=0.0043$).

Supplementary Table 1 VH:VL pairing analysis of a mixture of HEK293 cells transfected with 11 different known antibodies. The maximum read count for each row and column is highlighted; $11 / 11$ antibodies were identified and paired correctly in this control experiment. Read count variation was expected due to varying transfection \& expression efficiency for the 22 distinct heavy and light chain plasmids, and antibody clones \#10 and 11 exhibited notable VH-VL imbalance by total read counts. The signal:topVLnoise ratio (the relevant parameter for native pair assignment, see Supplementary Table 2) averaged 35:1 overall and 87:1 if noise from light chains 10 and 11 (which showed VH-VL imbalance, see total VH and VL reads) was excluded.

							Heavy						
		1H	2H	3H	4H	5H	6H	7H	8H	9 H	10H	11H	Total
	1L	1,842	4	20	13	18	16	39	20	49	6	4	2,031
	2L	0	4,916	34	31	59	41	102	127	146	28	8	5,492
	3L	0	2	6,251	9	38	25	116	60	118	13	2	6,634
\leq	4L	21	27	75	14,592	81	158	348	189	397	75	51	16,014
ฮ	5L	5	15	97	41	16,204	99	192	231	277	86	19	17,266
\bigcirc	6L	2	12	92	37	64	16,427	358	180	404	62	23	17,661
응	7L	9	13	218	72	112	180	21,315	203	1,320	78	45	23,565
-	8L	4	39	85	71	242	145	365	32,393	506	79	72	34,001
	9L	4	29	182	105	116	186	1,335	323	35,391	109	46	37,826
	10L	12	24	944	189	1,597	1,080	3,519	1,898	4,291	8,535	98	22,187
	11L	32	66	1,153	272	1,258	1,655	6,405	6,567	6,185	555	14,126	38,274
	Total	1,931	5,147	9,151	15,432	19,789	20,012	34,094	42,191	49,084	9,626	14,494	220,951

Supplementary Table 2 Accuracy statistics for human VH:VL paired analysis with an ARH-77 immortalized cell line control spike.

Estimated input human B cells	20,000
Estimated ARH-77 spiked cells	260
VH:VL Reads after CDR3 clustering	403,897
Recovered CDR-H3:CDR-L3 Clusters	1,751
Correct ARH-77 VH:VL Reads (Signal)	2,604
ARH-77 Top Incorrect VL Reads (topVLnoise)	27
ARH-77 2nd-Ranked Incorrect VL Reads	19
ARH-77 3rd-Ranked Incorrect VL Reads	16
ARH-77 Signal:topVLnoise Ratio*	96.4

[^0]Supplementary Table 3 Memory B cell counts before and after in vitro activation. Values must be considered rough estimates due to varying contributions of hemocytometer sampling, centrifugation/recovery cell loss, and cell death, stasis, and expansion over four days in vitro.

Sample	FACS Count Fresh Bmems	Hemocytometer Count After 4d Activation
Donor 1	1.8 million	1.6 million viable
Donor 2	1.1 million	1.3 million viable
Donor 3	347 k	300 k viable
ARH-77 spike experiment	87 k	20k viable

Supplementary Table 4 Leader peptide overlap extension primers.

Conc (nM)	Primer ID	Primer Sequence
40	VH1_LP	tattcceatcgcggcgcACAGGTGCCCACTCCCAGGTGCAG
40	VH3_LP	tattcccatcgeggcgcAAGGTGTCCAGTGTGARGTGCAG
40	VH4/6_LP	tattcceatcgcggcgcCCCAGATGGGTCCTGTCCCAGGTGCAG
40	VH5_LP	tattcceatcgcggcgcCAAGGAGTCTGTTCCGAGGTGCAG
40	hV $\lambda 1$ for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGGTCCTGGGCCCAGTCTGTGCTG
40	hV $\lambda 2$ for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGGTCCTGGGCCCAGTCTGCCCTG
40	hV 3 3for-2_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAYWCTGCACAGGCTCTGTGACCTCCTAT
40	hV $24 / 5$ for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGGTCTCTCTCSCAGCYTGTGCTG
40	hV $\lambda 6$ for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGTTCTTGGGCCAATTTTATGCTG
40	hVג7for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGGTCCAATTCYCAGGCTGTGGTG
40	hV λ 8for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAGAGTGGATTCTCAGACTGTGGTG
40	hVk1/2for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAATGAGGSTCCCYGCTCAGCTGCTGG
40	hVк3for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCACTCTTCCTCCTGCTACTCTGGCTCCCAG
40	hVк4for_LP	gcgccgcgatgggaataNNNNNNNNNNNNNNNNTCTGCTCGAGTTCGGTCAATTTCTCTGTTGCTCTGGATCTCTG

[^0]: *The key metric for VH:VL pair assignment (see main text)

